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Chapter 1
Using Algebra to Approximate

“Instantaneous Speed,” Generic Problem Set #1
A major impetus for the development of calculus was 17th-century scientists’ need to know about rates of change of
one quantity compared to another such as the rate of change of position compared to time. Instantaneous speed was
an especially important quantity to those scientists. Any calculus book you pick up will have dozens, if not hundreds,
of references to the terms rate of change and instantaneous rate of change. Your calculus teacher and your text will
assume that you understand what those terms mean. This is not “your father’s (or mother’s)” calculus text. In fact,
as the title clearly states, it is not a text at all, giving the author license to do many things differently.

Both of these terms, rate of change and instantaneous speed, are highly abstract and could only be imagined
at the time Isaac Newton and Gottfried Leibniz were putting the final touches on what we now call calculus. The
development of strobe light photography allows us to see photographs that can help us understand by inference the
meaning of both of those terms.

Photograph by Terence Kearey, Sweden

In the image at left, you see a ball rolling down an incline.
There is one ball whose image is repeatedly captured every time
the strobe light flashes. Notice that the ball images at the top of
the incline are closer together than those in the middle and much
closer together than the ball images toward the bottom. Because
the strobe light flashes at equal time intervals, you can infer that
the ball picks up speed over time as the ball’s inertia is overcome
by gravity. The speed of the ball is increasing over time.

The same comments can be made about the image at right.

Photograph by Terence Kearey, Sweden

The interval between the images of the ball increase as it de-
scends the ramp, indicating an increasing speed, until the ball
reaches the bottom of the ramp and starts up the other side. There,
the images start occurring more closely spaced, indicating a de-
creasing speed. Then, the ball makes the return trip and stops just
below where it started because some energy was lost to friction
during the trip.

Photograph by Terence Kearey, Sweden

The figure at left also demonstrates both increasing and de-
creasing speeds. The weight on the end of the string is pho-
tographed closely together at first but further apart at the bottom
of its pendulum swing, indicating an increase of speed. Corre-
spondingly, the weight’s image is captured closer and closer to-
gether as the weight approaches the end of its pendulum swing,
indicating a decrease of speed.

1



2 Twenty Key Ideas in Beginning Calculus

With less commentary, three more images are shown below. A large gap between images indicates a (relatively)
high speed while a small gap between images indicates a (relatively) low speed. The two images at left have an initial
external force acting on them in addition to gravity, while the image of the falling egg has only gravity acting on it.

Decreasing then
Increasing Speed Decreasing Speed Increasing Speed

c�1995 Richard Megna c�1995 Richard Megna c�1995 Richard Megna
Fundamental Photographs Fundamental Photographs Fundamental Photographs

www.fphoto.com www.fphoto.com www.fphoto.com

Instantaneous Speed

Over and over, the terms increasing
and decreasing speeds have been used. An-
other term that is used in beginning calcu-
lus books is instantaneous speed. The im-
age at the right gives an idea of what the
term instantaneous speed must mean. (No-
tice the rifling marks on the bullet. It may
be tempting here to assume from this im-
age that the bullet is not moving hence has
a speed of zero. The next several pages will
dispel such a notion.)

c�2010 MIT Courtesy of MIT Museum
edgerton-digital-collections.org
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Changing Rates of Speed

c�2010 MIT Courtesy of MIT Museum c�2010 MIT Courtesy of MIT Museum
edgerton-digital-collections.org/ edgerton-digital-collections.org/

Instantaneous Speed

This image was taken the exact instant a Prandtl-Glauert condensation cloud formed about a jet.
Christopher Pasatieri/Reuters via National Geographic News

news.nationalgeographic.com/news/2009/06/photogalleries/week-in-news-pictures-133/photo2.html



4 Twenty Key Ideas in Beginning Calculus

PROBLEM 1: A missile is fired at a target 64 miles away. The distance in miles that the missile has traveled from
its starting point is given by the function f (t) = t2, where t is in minutes. Determine the speed of
the missile at time t = 8, the precise instant when it strikes the target—its instantaneous speed. Here
the function f (t) = t2 relates two values, time and distance, with distance depending on the value of
time.

As the term instantaneous speed is unfamiliar to us, we engage in a classic problem-solving technique. Look for
something that is similar to what you wish to know, think about the similarities and differences of the two situations
and then try to use knowledge or results from the known situation to apply to the new unknown one . . . a primitive
form of induction.

From work in beginning algebra, you should have seen or heard the term speed. (Sometimes you see the word
velocity.) It is implied in the formula d = r × t . . . distance = rate × time. For example, 240 miles = 60 mph × 4
hours. The term rate in this formula is understood to be average speed. Average speed means speed over a specified
interval of time . . . in this case, one hour. That’s where the ph comes from in the mph, miles per hour. If you travel
100 miles in two hours you are traveling, on average, 50 mph, regardless of how fast you were going at each minute
during those two hours.

Solving d = r × t for the variable r using algebra, we should be able to find the average speed of the missile
in Problem 1 using the formula r = d

t over different time intervals (such as from one minute into the flight to eight
minutes into the flight, etc.). The following table presents the calculations with the ending time of each interval being
when the missile reaches the target. Therefore, the ending position is always 64 miles.

Time in minutes
(domain)

Position in miles,
d = t2 (range) r = d

t

Starting Ending Starting Ending speed = ending position−starting position
ending time−starting time

0 8 0 64 r = 64−0
8−0 = 8 mpm

1 8 1 64 r = 64−1
8−1 = 9 mpm

2 8 4 64 r = 64−4
8−2 = 10 mpm

3 8 9 64 r = 64−9
8−3 = 11 mpm

4 8 16 64 r = 64−16
8−4 = 12 mpm

5 8 25 64 r = 64−25
8−5 = 13 mpm

6 8 36 64 r = 64−36
8−6 = 14 mpm

7 8 49 64 r = 64−49
8−7 = 15 mpm

8 8 64 64 r = 64−64
8−8 = 16 mpm ???

Indeterminate division by zero!!!
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The sequence of average speeds calculated above, 8 mpm, 9 mpm, 10 mpm, 11 mpm, 12 mpm, 13 mpm, 14 mpm
and 15 mpm, seems reasonable as we know from watching tv and movies that rocket ships get faster and faster as
the initial stationary inertia of the projectile is overcome by the rocket’s thrust. Did we achieve our goal of obtaining
the instantaneous speed of the rocket at t = 8 or equivalently at d = 64? Well, no, but we suspect that it must be
greater than 15 mpm.

Let us continue this same pattern of analysis. Let’s concentrate on the average speed as the missile approaches
its target over the last minute (t = 7 to t = 8) of its flight: f (t) = t2.

Time in minutes
(domain)

Position in miles,
d = t2 (range) r = d

t

Starting Ending Starting Ending speed = ending position−starting position
ending time−starting time

7 8 49 64 r = 64−49
8−7 = 15 mpm

7.9 8 62.41 64 r = 64−62.41
8−7.9 = 15.9 mpm

7.99 8 63.8401 64 r = 64−63.8401
8−7.99 = 15.99 mpm

7.999 8 63.984001 64 r = 64−63.984001
8−7.999 = 15.999 mpm

8 8 64 64 r = 64−64
8−8 = 16 mpm ???

Indeterminate division by zero!!!

Combining the old data for average speeds as the missile approached its target with the new data for average
speeds, we now get the sequence of “average speeds” as calculated above for decreasing intervals of time:

8, 10, 12, 14, 15, 15.9, 15.99, and 15.999

From the pattern of average speeds shown above, it would seem reasonable to conclude that the “instantaneous
speed” when t = 8 minutes and d = 64 miles is 16 mpm. However, how could you justify or prove such an
answer? The answer is, “Using simple algebraic skills you can’t.” You can only approximate. (See Appendix A,
15.999 . . . = 16, for an interesting discussion of this.) The algebraic attempt to calculate the instantaneous speed
using the formula for average speed over a time interval of zero length results in a division by zero. The proof that
the instantaneous speed of the missile at t = 8 seconds and d = 64 miles is exactly 16 mpm can only be obtained
using knowledge and skills and vocabulary learned in calculus.
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OK let’s review.

PROBLEM 1: A missile is fired at a target 64 miles away. The distance in miles that the missile has traveled from
its starting point is given by the function f (t) = t2, where t is in minutes. Determine the speed of the
missile at time t = 8, the precise instant when it strikes the target—its instantaneous speed.

The sequence of “average speeds” as calculated above for decreasing intervals of time is:

8, 10, 12, 14, 15, 15.9, 15.99, and 15.999 . . . 16 mpm ???

We suspect that the “instantaneous speed” for the missile when t = 8 minutes and d = 64 miles is 16 mpm but
cannot really prove our suspicions. Look at the sequence of average speeds again. How would you describe them?
Are they getting larger with each term? Yes. Could an average speed ever get to be 100 mpm? Do you think that
given the function f (t) = t2 and the time and distance constraints (0 <= t <= 8 minutes, 0 <= d <= 64 miles) that
the missile will ever speed up to 100 mpm in its last 0.001 minute of flight? Do you think that the instantaneous
speed will ever get larger than 16? Do you think that the instantaneous speed will ever reach 16? Let’s look at those
numbers one more time:

(average speeds over decreasing time intervals)
8, 10, 12, 14, 15, 15.9, 15.99, 15.999 mpm
ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2 2 1 0.9 0.09 0.009

(increase of average speed from the previous time interval)

After one month of instruction, a cal-

culus student should be able to solve

for the exact answer to Problem 1 in-

side the space of this text box and be

able to do so in less than a minute.

These numbers (average speeds) are increasing each for each interval, but the rate of
increase each time seems to be decreasing with the decreasing time intervals. Based
on the pattern of speed increases shown above, the last speed of 15.999 mpm
over the last 0.001 minute of flight will probably not increase greatly during
the remaining time of the missile’s flight. It appears that the number
16 acts as a sort of barrier or limit to the progression of
numbers we are calling average speeds. The study
of calculus will give you the tools to justify
this suspicion. It will allow you to say, with-
out any doubt, that the instantaneous speed of the
missile in this question at t = 8 minutes is 16 mpm.
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Would it matter if you were to calculate average speeds from the left of t = 8 minutes (from t = 7) or from the right
(from t = 9)? Well, obviously in the real world, the missile cannot approach t = 8 minutes from the right, even if it
missed the target (unless you ran video in reverse). Mathematically it should not matter.

Time in minutes
(domain)

Position in miles,
d = t2 (range) r = d

t

Starting Ending Starting Ending speed = ending position−starting position
ending time−starting time

↓ 7 8 ↓ 49 64 r = 64−49
8−7 = 15 mpm ↓

↓ 7.9 8 ↓ 62.41 64 r = 64−62.41
8−7.9 = 15.9 mpm ↓

↓ 7.99 8 ↓ 63.8401 64 r = 64−63.8401
8−7.99 = 15.99 mpm ↓

↓ 7.999 8 ↓ 63.984001 64 r = 64−63.984001
8−7.999 = 15.999 mpm ↓

8 8 64 64 r = 64−64
8−8 = 16 mpm ???

Indeterminate division by zero!!!

↑ 8.001 8 ↑ 64.016001 64 r = 64−64.016001
8−8.001 = 16.001 mpm ↑

↑ 8.01 8 ↑ 64.1601 64 r = 64−64.1601
8−8.01 = 16.01 mpm ↑

↑ 8.1 8 ↑ 65.61 64 r = 64−65.61
8−8.1 = 16.1 mpm ↑

↑ 9 8 ↑ 81 64 r = 64−81
8−9 = 17 mpm ↑

Here both the average speed as t approaches 8 from the left and the average speed as t approaches 8 from
the right seem to be converging to the same number, 16. For some functions, it does not
matter if the convergence is from the left or from the right. In Chapter 4, we will
look at some functions where the side of convergence does matter.
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A function f (x) can be vertically shifted by k, giving f (x) + k. The slopes of the tangents to function f (x) and
the new function f (x) + k at any point x will be the same: d

dx [ f (x)] = d
dx [ f (x) + k]. This is true whether the vertical

shift is up or down: d
dx [ f (x)] = d

dx [ f (x) − k].
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When a function f (x) is multiplied by a constant k, k[ f (x)], the slope of the tangent to the function, k[ f (x)], will
be k times the slope of the tangent to the function f (x).
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At any point x, the slope of the tangent to the curve k[ f (x)] is k times the slope of the tangent to the curve f (x):
d
dx [k f (x)] = k
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d
dx [ f (x)]
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“I’d like to be your derivative so I could lay next to your curves.”
The Big Bang Theory, a tv show about

geeky, socially awkward scientists.

“I’d like to be your integral so I could fill in your spaces.”
The Big Bang Theory, a tv show about

geeky, socially awkward scientists.
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Chapter 10 Review

In Chapter 1, we learned about the idea of generic problem sets. That is, by learning to recognize that a problem was
in a certain category and by knowing that there is a general approach to every problem in that category, you reduce
your learning curve and work effort by several orders of magnitude.

Related-­Rate  Problems

Speed
of  a
missile

Rate  of
change
of  area  of
an  oil  spill

Rate  of
change  of
volume  of
a  geometric
solid

Rate  of
change  in

trigonometric
functions

Rate  of
dissolving
a  chemical
compound

Speed  of  a
ball  thrown
from  the
top  of  a
building

Speed  at
which  a
ladder  was
falling

Rate  of
population
growth  of
bacteria

Rate  of
rise  of
water  in  a
conical
tank

Chapter 10 showed another example of a generic problem set: All of the problems share a commonality that
allowed us to solve them all with the same general approach. It would be difficult to overstate the importance of this
idea!

Min–Max  Problems

Sum  of
squares  at
a  minimum

Product  of
cube  and  a
square  at  a
maximum

Maximized
surface
area

Maximum
profit

Minimum
amount  of
fencing

Maximum
area

fenced  in

Maximum
volume

Minimal
amount  of
surface  area
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On the lead-in page to Chapter 10, we saw this nifty figure courtesy of my editor. It shows that whenever a
function is at a local minimum or maximum, the derivative at that x value is equal to 0.
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Another way to look at this information is to remember that the term “derivative” is actually a short way of saying
“derivative function.” You may remember in Chapter 1 that a derivative was referred to as a “derivative (function).”

f (x) = xn f �(x) = nxn−1

f (x) =
1
3

x3 − 2x2 + x + 9 f �(x) =
1
3

�
3x3−1

�
− 2
�
2x2−1

�
+ 1
�
x1−1
�
+ 0

= x2 − 4x + 1

Below we see the two functions f (x) and f �(x) graphed side by side.
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Finally, we see the two functions f (x) and f �(x) superim-
posed on the same axes.
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f �(x) = 0 when f (x) is at a local max or min.

The x-intercept for a function occurs whenever the func-
tion crosses the x-axis—when the y value equals 0. The x-
intercepts of the derivative (function), f �(x) = x2−4x+1,
are shown at right as Points 1 and 2. Notice that the func-
tion f (x) is at a local maximum at Point 1 and at a local
minimum at Point 2.
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f �(x) = 0 when f (x) is at a local max or min.

This was taught previously using a graphic comparable to
the the graph at right.
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f �(x) = 0 when f (x) is at a local max or min.
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Chapter 11 Lead In

In calculus, it is frequently the case that there are two different ways of looking at the same information. This was
shown in Chapter 2 when we found that “instantaneous speed” was mathematically equivalent to “slope of a tangent
to a curve at a given point.” In Chapter 11, we will again be seeing that the same information can be viewed from
two different perspectives. The ability to see the same idea from two different perspectives is very, very helpful in
the study of calculus. This ability comes so naturally to your calculus teacher that he or she may not point this out to
you. He or she will assume that if you understand one of two equivalent ideas that you understand the other.

Chapter 2 emphasized an important concept: For functions of the form y = f (x), an average speed between two
points in time, (a, f (a)) and (b, f (b)), could be obtained using the formula f (b)− f (a)

b−a . Alternatively, the slope of a secant
line between two points, (x1, y1) and (x2, y2), on a function could be found using the formula m = y2−y1

x2−x1
. Although

these were two different interpretations of the data, they were both mathematically equivalent. This equivalence
allowed us to interchange ideas between a conceptual (real-world) problem and a graph. Chapter 4 presented a
definition, “The Definition of f �(x),” that allowed us to decrease the interval between the two points in time (or the
two points used to determine secant slope) down to zero, allowing us to find either the “instantaneous speed” or the
“slope of a tangent” at a given point. Either process could be referred to by the generic term “finding a derivative.”

All the problems in Chapters 1–10 involved rates of change and were representative of the branch of calculus
known as differential calculus. Chapter 11 begins the study of a different branch of calculus, integral calculus. As
with differential calculus, the doorway to this branch of calculus will be a definition, The Definition of Area Under
a Curve. Again, as with differential calculus, there will be a mathematical equivalence between a real-world concept
and a mathematical one. This equivalence will again allow us to interchange ideas between a conceptual (real-world)
problem and a graph.

Two different ways of looking at the same idea.

Specifically, in Chapters 11 and 12, we will find that the area under a curve is equivalent to finding how much
“distance was traveled,” “pressure is exerted,” “work occurred,” etc.

1.) A rocket is accelerating (speeding up). Its speed (in mpm) is given by the function r = t2. How far did the

rocket travel in the first four minutes? In general this problem is worked using the formula Distance = rate
× time or d = rt.

2.) Given that the density of water is 62.5 lb/ft3, find the force of the water against a triangular dam 50 feet

wide and 40 feet deep. In general, this problem is worked using the formula pressure = force × area or p = f a.

3.) A force of 500 pounds compresses a spring 2 inches from its natural length of 16 inches. Use Hooke’s Law,

f = kd, to find the work done in compressing the spring an additional four inches. In general, this
problem is worked using the formula Work = Force × Distance or w = f d.



Chapter 11
Using Algebra to Introduce Integral Calculus

A car travels 10 mph for one hour
20 mph for one hour
30 mph for one hour

and 40 mph for one hour
What was the total distance that the car traveled?

Total distance the car traveled = d1+d2+d3+d4.
This total distance can be thought of in two different
ways as shown below.

1 2 3 4

10

20

30

40

S
p
e
e
d

Hours

10  miles

traveled

20  miles

traveled

30  miles

traveled

40  miles

traveled

(Using the distance formula, d = rt)

dhour 1 + dhour 2 + dhour 3 + dhour 4 =

Note that distance is rate times time: d = rt
(r1t1) + (r2t2) + (r3t3) + (r4t4) =

(10 × 1) + (20 × 1) + (30 × 1) + (40 × 1) =
10 + 20 + 30 + 40 = 100 miles

(Using the area of a rectangle formula, a = bh)

dhour 1 + dhour 2 + dhour 3 + dhour 4 =

Note that area is base times height: d = a = bh
(b1h1) + (b2h2) + (b3h3) + (b4h4) =

(10 × 1) + (20 × 1) + (30 × 1) + (40 × 1) =
10 + 20 + 30 + 40 = 100 miles

It is more than just a little bit important for you to understand what is demonstrated above. The thought process
at the left uses the formula d = rt and shows how a science or engineering teacher thinks. The thought process at
the right uses the formula a = bh and shows how a mathematics teacher thinks. These two ways of thinking about
the problem are mathematically equivalent: The width of the base of each rectangle is equal to the time the car
spends traveling at each speed. Correspondingly, the height of each rectangle is equal to the rate at which the car
was traveling.

Math teachers teach in generalities using abstractions assuming that their students understand that such skills
can be applied to specific problems in business, science, engineering, psychology, and many other fields. But the
generalities that math teachers use are sometimes very far removed from any application, so far that the student
might miss the connection between the two.
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A rocket is accelerating (speeding up). Its speed (in mpm) is given by the function
r = t2. How far did the rocket travel in the first 4 minutes?

r = t2

Time (minutes) Speed (mpm)
0 0
1 1
2 4
3 9
4 16

This new problem is pretty well the same as the one before except for the fact that the object in motion is
now moving with a continuous acceleration. Before, because the car’s speed over each of the equally spaced time
intervals was constant and because the change in speed was effectively instantaneous each time the speed did change,
we could represent the distance traveled over each time interval as the area of a rectangle and calculate the respective
areas (distance traveled over each time interval). The fact that this new problem is conceptually the same as the
previous one means that the answer to the new problem could be found by finding the area under the curve from
x = 0 to x = 4. However, this time we have a continuous and variable speed, resulting in a curved line which will
not allow us to form and add up areas/distances using the formulas d = rt and a = bh. Conceptually, there are
similarities here to Chapters 1 and 2 in this book. There, we did not know how to find instantaneous speed or slope
of a tangent to a curve at a given point, so we used our algebra skills to generate successive approximations of the
desired information, r = d

t and m = y2−y1
x2−x1

. That gives us the idea of successively approximating the area under the
curve by adding up an increasing number of smaller and smaller rectangle areas.

As has been shown on the previous page, each of the four rectangle areas shown here approximates the distance
the rocket traveled over that time interval. (Author’s note, partition 0 is from 0 to 1. Note also that the y axis is
compressed in the graph below.)
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The distance that the rocket traveled over four minutes is approximately 14 miles (0 + 1 + 4 + 9). Notice that
the rectangles do not completely fill the space below the curve. There are four rounded triangles missing from the
calculated area below the curve y = x2. That means that this is a low estimate.

x
Rectangle height

x2
Rectangle base (interval/number

of rectangles)
Area of the rectangle

a = bh
0 0 1 0
1 1 1 1
2 4 1 4
3 9 1 9
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To improve the previous approximation, we next increase
the number of rectangular partitions to eight. Now the base of
each rectangle is the size of the interval divided by the number
of partitions = 4

8 =
1
2 . (Author’s note, partition 0 is from 0 to 1

2 .
Note also that the y axis is compressed.) The sum of these eight
rectangle areas is 0+ 1

8 +
4
8 +

9
8 +

16
8 +

25
8 +

36
8 +

49
8 =

140
8 = 17.5

units.

x
Rectangle height

x2
Rectangle base

interval
number of rectangles

Area of the
rectangle a = bh

0 0 1
2 0

1
2

1
4

1
2

1
8

1 1 = 4
4

1
2

1
2 =

4
8

3
2

9
4

1
2

9
8

2 4 = 16
4

1
2 2 = 16

8
5
2

25
4

1
2

25
8

3 9 = 36
4

1
2

9
2 =

36
8

7
2

49
4

1
2

49
8

Let’s talk about those units for a moment. The base

of the rectangle is minutes (min), and the height of the

rectangle is miles per minute

�
miles

min

�
. So, the product is

miles

✟✟min
×✟✟✟min = miles. That’s good; the units match what we

thought we were calculating.

Therefore, the distance the rocket traveled over four min-
utes is approximately 17.5 miles. Continuing this pattern for
16 and 32 rectangles, we get the figures at right.
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The mathematics of adding up these areas is getting more laborious and time consuming. Perhaps there is a
pattern we could use. Using the data from the table, let’s sum up the areas of the graph with eight rectangles.

Area = 0 +
1
8
+

4
8
+

9
8
+

16
8
+

25
8
+

36
8
+

49
8
=

140
8
= 17.5

= area0 + area1 + area2 + area3 + area4 + area5 + area6 + area7 = total area

= b0h0 + b1h1 + b2h2 + b3h3 + b4h4 + b5h5 + b6h6 + b7h7

Now, since the base of all these rectangles is the same— interval length
number of rectangles —substitute b for bn:

Area = bh0 + bh1 + bh2 + bh3 + bh4 + bh5 + bh6 + bh7

= b × (h0 + h1 + h2 + h3 + h4 + h5 + h6 + h7), factor out b

=
1
2
×

0

2 +

�
1
2

�2
+

�
2
2

�2
+

�
3
2

�2
+

�
4
2

�2
+

�
5
2

�2
+

�
6
2

�2
+

�
7
2

�2

=
1
2
×
�
0 +

1
4
+

4
4
+

9
4
+

16
4
+

25
4
+

36
4
+

49
4

�
=

1
2
× 1

4
× [0 + 1 + 4 + 9 + 16 + 25 + 36 + 49], factor out

1
4

=
1
8
×
�
02 + 12 + 22 + 32 + 42 + 52 + 62 + 72

�
=

1
8
× the sum of the squares of the integers from 0 to 7

=
1
8
× 7 × 8 × 15

6
= 17.5, a formula from precal states

n−1�

0

i2 =
(n − 1)(n)(2n − 1)

6
, see Appendix H
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In general, this work suggests that the area of any n rectangles could be found by the formula b3× (n−1)(n)(2n−1)
6 =

� interval length
number of rectangles

�3 × (n−1)(n)(2n−1)
6 . Note that this only works to approximate the area under the curve y = x2 on the

interval from zero to four.

16 rectangles, on [0, 4] :
�

4
16

�3
× 15 × 16 × 31

6
=

15 × 16 × 31
64 × 6

= 19.375

32 rectangles, on [0, 4] :
�

4
32

�3
× 31 × 32 × 63

6
=

31 × 32 × 63
512 × 6

= 20.34375

64 rectangles, on [0, 4] :
�

4
64

�3
× 63 × 64 × 127

6
=

63 × 64 × 127
4,096 × 6

= 20.8359375

128 rectangles, on [0, 4] :
�

4
128

�3
× 127 × 128 × 255

6
=

127 × 128 × 255
32,768 × 6

= 21.0839843

256 rectangles, on [0, 4] :
�

4
256

�3
× 255 × 256 × 511

6
=

255 × 256 × 511
262,144 × 6

= 21.2084961

Number of
partitions

Rectangle
sum

4 14
8 17.5

16 19.375
32 20.34375
64 20.8359375

128 21.0839843
256 21.2084961

The table and calculations above going up to 256 partitions suggest the rectangular sum will continue to get
larger; as it does, more and more of the area under the curve will be included in the summation process. Does it seem
as though the summation of the rectangles could ever be as much as 100? Could there ever be enough rectangles?
The rectangles are getting more and more numerous, but each of their areas is getting smaller. That is what the
process called “exhaustion” does. It “exhausts” more and more of the unused areas under the curve and the result is
that the sum of rectangle areas is getting closer and closer to the area under the curve. See the figures on page 103.

What would happen if we approached the area under the curve from the other direction, upper approximations
getting closer and closer to the actual area? See the figure below. As before, the y-axis has been compressed for
demonstration purposes.
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x
Rectangle height

x2
Rectangle base

interval
number of rectangles

Area of the rectangle
a = bh

1 1 1 1
2 4 1 4
3 9 1 9
4 16 1 16

The sum of the four rectangles is 1 + 4 + 9 + 16 = 30 units. The distance that the rocket traveled over four
minutes is approximated to be 30 miles. Clearly this approximation is high as there are areas above the curve that
were included in this approximation and should not have been.
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Continuing this process for eight rectangles, we get the figure
at the right.

The sum of these eight rectangle areas is 1
8 +

4
8 +

9
8 +

16
8 +

25
8 +

36
8 +

49
8 +

64
8 =

204
8 = 25.5 units. Therefore, the distance the

rocket traveled over four minutes is approximately 25.5 miles.

x
Rectangle height

x2
Rectangle base

interval
number of rectangles

Area of the
rectangle a = bh

1
2

1
4

1
2

1
8

1 1 = 4
4

1
2

1
2 =

4
8

3
2

9
4

1
2

9
8

2 4 = 16
4

1
2 2 = 16

8
5
2

25
4

1
2

25
8

3 9 = 36
4

1
2

9
2 =

36
8

7
2

49
4

1
2

49
8

4 16 = 64
4

1
2

16
2 =

64
8

Continuing this pattern for 16 and 32 rectangles, we get the
figures at right.
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Using the data from the table, let’s sum up the areas of the graph with eight rectangles.

Area =
1
8
+

4
8
+

9
8
+

16
8
+

25
8
+

36
8
+

49
8
+

64
8
=

204
8
= 25.5

= area1 + area2 + area3 + area4 + area5 + area6 + area7 + area8 = total area

= b1h1 + b2h2 + b3h3 + b4h4 + b5h5 + b6h6 + b7h7 + b8h8

Now, since the base of all these rectangles is the same— interval length
number of rectangles —substitute b for bn:

Area = bh1 + bh2 + bh3 + bh4 + bh5 + bh6 + bh7 + bh0

= b × (h1 + h2 + h3 + h4 + h5 + h6 + h7 + h0), factor out b

=
1
2
×



�
1
2

�2
+

�
2
2

�2
+

�
3
2

�2
+

�
4
2

�2
+

�
5
2

�2
+

�
6
2

�2
+

�
7
2

�2
+

�
8
2

�2

=
1
2
×
�
1
4
+

4
4
+

9
4
+

16
4
+

25
4
+

36
4
+

49
4
+

64
4

�
=

1
2
× 1

4
× [1 + 4 + 9 + 16 + 25 + 36 + 49 + 64], factor out

1
4

=
1
8
×
�
12 + 22 + 32 + 42 + 52 + 62 + 72 + 82

�
=

1
8
× the sum of the squares of the integers from 1 to 8

=
1
8
× 8 × 9 × 17

6
= 25.5, a formula from precal states

n�

1

i2 =
(n)(n + 1)(2n + 1)

6
, see Appendix H
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In general, this work suggests that the area of any n rectangles could be found by the formula b3× (n)(n+1)(2n+1)
6 =

� interval length
number of rectangles

�3 × (n)(n+1)(2n+1)
6 . Note that this only works to approximate the area under the curve y = x2 on the

interval from zero to four.

16 rectangles, on [0, 4] :
�

4
16

�3
× 16 × 17 × 33

6
=

16 × 17 × 33
64 × 6

= 23.375

32 rectangles, on [0, 4] :
�

4
32

�3
× 32 × 33 × 65

6
=

32 × 33 × 65
512 × 6

= 22.3437

64 rectangles, on [0, 4] :
�

4
64

�3
× 64 × 65 × 129

6
=

64 × 65 × 129
4,096 × 6

= 21.8359375

128 rectangles, on [0, 4] :
�

4
128

�3
× 128 × 129 × 257

6
=

128 × 129 × 257
32,768 × 6

= 21.5839844

256 rectangles, on [0, 4] :
�

4
256

�3
× 256 × 257 × 513

6
=

256 × 257 × 513
262,144 × 6

= 21.4584961

Number of
partitions

Lower
rectangle

sum

Upper
rectangle

sum
4 14 30
8 17.5 25.5

16 19.375 23.375
32 20.34375 22.3437
64 20.8359375 21.8359375

128 21.0839843 21.5839844
256 21.2084961 21.4584961

Are you getting another one of those déjà vu feelings? Something seems familiar here.

Reorganizing the current area sum data from the table shown above as we did when approximating instantaneous
speeds in the Chapter 1 review, we get the following table.

Lower area rectangles Upper area rectangles
Number of
rectangles

64 → 128 → 256 → ∞ ← 256 ← 128 ← 64

Area sum of
rectangles

20.83594 → 21.08398 → 21.208496 → Actual area
under curve

← 21.458496 ← 21.58398 ← 21.83594

Limit of an Infinite Series

Now it is more clear that the lower area rectangle sums are increasing toward the area under the curve y = x2

from below while the upper area rectangle sums are decreasing toward the same value (area under the curve) from
above. The upper and lower sums are approaching the same value—a limit. That limit is the area under the curve.

This is all very similar to the discussion and table in Chapter 1 when we showed secant-line slopes as they
approached the slope of the tangent to the curve y = x2 at x = 8 from both the right and the left. That tangent slope
of 16 limited the progression of secant slopes from both the left and the right. Remember LimitMan in Chapter 1?

x 7.9 → 7.99 → 7.999 → 8.0 ← 8.001 ← 8.01 ← 8.1
m 15.9 → 15.99 → 15.999 → 16.0??? ← 16.001 ← 16.01 ← 16.1

Limit of an infinite Sequence of Secant Slopes

In Appendix B, we will see a new kind of limit, the limit of a function.
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In order for the rectangles to perfectly fit under the curve they will all need to be very skinny and there will need
to be a lot of them. Intuitively you can think of this situation as “infinite rectangles, each infinitesimally narrow.”

Lower area rectangles Upper area rectangles
Number of
rectangles

64 → 128 → 256 → ∞ ← 256 ← 128 ← 64

Area sum of
rectangles

63�
i=0

f (xi)∆x →
127�
i=0

f (xi)∆x →
255�
i=0

f (xi)∆x → Actual area
under curve ←

256�
i=1

f (xi)∆x ←
128�
i=1

f (xi)∆x ←
64�
i=1

f (xi)∆x

The lower area rectangle sums are increasing toward the area under the curve y = f (x) from below while
the upper area rectangle sums are decreasing toward the same value (area under the curve) from above. The math
symbolism used when that happens is

lim
n→∞

n−1�

i=0

li∆x = lim
n→∞

n�

i=1

ui∆x,

where li represents the lengths of all rectangles “lower than” the curve and ui represents the lengths of all the
“upper” rectangles, ∆x represents the width of each rectangle in each set and is determined by the expression
upper domain−lower domain

number of partitions , n is the number of rectangles being summed in this set, and i is a counter that keeps track of
which rectangle you are summing.

There is something to keep in mind. It can
be demonstrated that when n → ∞, it really
does not matter too much whether the area is
approached using lower sums or using upper
sums or rectangles that are partly above and
partly below. To see this, note that the height
of the rectangle is significantly affected by this
choice when the width of the rectangle is large,
but it is not significantly affected by this choice
when the width of the rectangle is small. The
figure at right can help clarify this point.

All this implies that you can choose any x
value in the ith subinterval and that choice will
not affect the limit (sum of areas) when n→ ∞.

!!"!"##$

#%&'('!$%!)!$!)!$% $$
$!"!& $!"!'

$
$% $$%

*'+,!-.(/'(

012&,!-.(/'(
31445'

67 8 9 : ;<=

6

7

8

>7

9

:

77? 7@ 78

The lower and upper sum limits,

lim
n→∞

n−1�

i=0

f (li)∆x = lim
n→∞

n�

i=1

f (ui)∆x,

can be seen in the definition at right.

Definition of Area Under a Curve
Let f be continuous and nonnegative on the interval [a, b]. The area of the

region bounded by f , the x-axis, and the vertical lines x = a and x = b, is

lim
n→∞

n�

i=1

f (xi)∆x,

where a < xi < b, with i designating the subinterval of x and ∆x = b−a
n .

Calculus with Analytic Geometry (5th ed.) Larson, Hostetler, and Edwards,
D.C. Heath, 1994, pg. 265, modified by this author.

Let’s try this new definition out on the problem in Chapter 11!

A rocket is accelerating (speeding up). Its speed
(in mpm) is given by the function r = t2. How far
did the rocket travel in the first 4 minutes?
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lim
n→∞

n�

i=1

f (xi)∆x = lim
n→∞




�
interval length
num rectangles

�3 n(n + 1)(2n + 1)
6


 , from work done in Chapter 11

= lim
n→∞




�
4
n

�3 n(n + 1)(2n + 1)
6


 = lim

n→∞

�
64
n3

n(n + 1)(2n + 1)
6

�
, because

�a
b

�m
=

am

bm

= lim
n→∞

�
64
n2

(n + 1)(2n + 1)
6

�
, canceling out the n terms

= lim
n→∞

�
32
n2

2n2 + n + 2n + 1
3

�
, reducing

64
6

to
32
3

and FOIL

= lim
n→∞

�
32
n2

2n2 + 3n + 1
3

�
= lim

n→∞

�
64n2 + 96n + 32

3n2

�

= lim
n→∞

64n2

3n2 + lim
n→∞

96n
3n2 + lim

n→∞
32
3n2 , limit of a sum is the sum of the its limits

= lim
n→∞

64
3
+ 0 + 0, canceling

n2

n2 and reducing
96n
3n2 , then the denominators go to∞

= 21.333333, actual area under the curve!

Let’s compare this answer with the lower and upper sum approximations we obtained back in Chapter 11 when
we were doing this same problem. As the number of rectangles goes to infinity, the sum of areas goes to the area
under the curve.

Lower area rectangles Upper area rectangles
Number of
rectangles

64 → 128 → 256 → ∞ ← 256 ← 128 ← 64

Area sum of
rectangles

20.83594 → 21.08398 → 21.208496 → 21.333333 ← 21.458496 21.58398 ← 21.83594

Without calculus With integral calculus

a1 + a2 + · · · + an = S a1 + a2 + · · · = S

Sum of a finite number of terms Sum of an infinite number of terms
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Chapter 12 Review

In Chapter 12, attempts to determine the area under
a curve using successive approximation of finite rectangle
areas are replaced with the summation of infinite rectangle
areas allowing us to find the area under a curve exactly
rather than approximately. Just as in Chapter 4, where the
Definition of f �(x) allowed us to find an exact value for
the slope of a tangent to a curve,
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Johnson and Kiokemeister’s Calculus with Analytic
Geometry (5th ed.), Johnson, Kiokemeister, and Wolk,
Allyn and Bacon, 1974, pg. 91, modified by this author.

the new definition of the area
under a curve,

Definition of Area Under a Curve
Let f be continuous and nonnegative on the interval [a, b]. The area of the

region bounded by f , the x-axis, and the vertical lines x = a and x = b, is

lim
n→∞

n�

i=1

f (xi)∆x,

where a < xi < b, with i designating the subinterval of x and ∆x = b−a
n .

Calculus with Analytic Geometry (5th ed.) Larson, Hostetler, and Edwards,
D.C. Heath, 1994, pg. 265, modified by this author.

allows us to find an exact value for the area under a curve. This new definition was demonstrated by applying it to
the problem that was worked back in Chapter 11. Intuitively, the “Definition of Area Under a Curve” can be thought
of as summing up the areas of infinitesimally thin rectangles. Both of these definitions involve the idea of “limit.” In
this book, we see three kinds of limits: limit of a sequence of secant slopes, limit of a series, and limit of a function.
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"!"!&2 “A missile is accelerating. Its distance is given by the function d =
t2. Find the instantaneous speed of the missile when it strikes its
target at t = 4.” The definition of f

�
(x) is applied here to find

the limit of an infinite sequence of ratios. (Recall that d = rt so
r = d/t.) As n→ ∞, d1

t1 ,
d2
t2 ,

d3
t3 ,

d4
t4 . . .→ r, the instantaneous speed

at t.
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“A missile is accelerating. Its speed is given by the function r = t2.
Find the distance the missile traveled at t = 4.” The definition

of “area under a curve” is applied here on the same three

variables as were used in the problem above (d, r, and t) to

find the limit of an infinite series of products. As n → ∞,
r1t1 + r2t2 + r3t3 + r4t4 + · · · → d. (Recall from pg 103 that
r × t = miles

✟✟min ×✟✟min = miles.) The definition of f � generates an
infinite “sequence,” while the definition of area under a curve gen-
erates an infinite “series.”



114 Twenty Key Ideas in Beginning Calculus

Since calculating the area under a curve is mathematically equivalent to solving many applied problems, this
skill takes on new importance and significance. Finding the area under the curve y = x2 was easy because that par-
ticular problem involved summing up perfect squares,

�n
i=1 i2. A clever formula (Appendix H) was used to develop

another formula, interval length
number of rectangles

n(n+1)(2n+1)
6 . In general, the functions we will be using will not lend themselves to

the development of such clever formulas. Even if they did, there is an infinity of function possibilities, and it would
not be desirable to have to develop a special formula for each of them. What we need is a generic approach that will
work for all functions. That is what Chapter 13, and the Fundamental Theorem of Calculus, is about.

The goal of the Fundamental Theorem of Calculus is to develop a function that will allow a person to obtain
the area under a curve simply by substituting values a and b into that function. This function, Area(a, b), will be
analogous to the previously discussed f �(x) that allows us to quickly and simply evaluate the instantaneous speed or
slope of a tangent to a polynomial curve at a specified point (x, f (x)).

Function machine to determine slope of the tangent
to a function at any point (x, f (x)) on the function.

No more using secant-line slopes to successively
approximate the slope of a tangent.

Function machine to determine the area under
a curve between specified bounds, a ≤ x ≤ b.

No more using rectangle area sums to succes-
sively approximate the area under a curve.

Before learning more about the function Area(a, b) for f (x), it will be instructive to talk about a new kind of
function called an “antiderivative function.” If f (x) is some function, we know that the derivative can be written as
f �(x) = d

dx [ f (x)]. Similarly, we write the antiderivative of f (x) as F(x) =
�

f (x)dx. You have seen, in both arithmetic
and algebra, ideas that were somewhat similar. When you were taught 3+1 = 4, therefore 3 = 4−1, the term “inverse
operation” was used. Similarly 5 × 2 = 10 can be written as 5 = 10

2 because multiplication and division are inverse
operations. In algebra, you were taught that if f (x) = 2x+ 1 and g(x) = x−1

2 then f [g(x)] = x = g[ f (x)] because f (x)
and g(x) are inverse functions. The derivative and antiderivative functions are inverse functions:

�
f �(u)du = f (u) =

d
du [F(u)].
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Before Newton and Leibniz, a branch of mathematics known as Euclidean geometry was the consistent syn-
ergism of undefined terms (points, lines, space, etc.), common notions (postulates), and theorems. After Newton
and Leibniz, calculus was to be the synergism of basic algebraic properties (commutative, associative, distributive,
etc.), definitions (definition of derivative, definition of area Without calculus With integral calculus

Area of a rectangle Area under a curveunder a curve), and easy-to-apply theorems (derivative of
xn; derivative of a polynomial sum, difference, product, and
quotient; derivative of trigonometric functions; FTC) which
derived from the properties and definitions. As with geom-
etry, all the properties, definitions, and theorems in calculus
would be consistent (not contradict each other).

Visit the Wolfram Demonstration Project

The Fundamental Theorem of Calculus The Fundamental Theorem of Calculus
http://demonstrations.wolfram.com/FundamentalTheoremOfCalculus http://demonstrations.wolfram.com/TheFundamentalTheoremOfCalculus



Epsilon–Delta Proof of Existence of a Limit 135

LimitMan is looking at the point (8, 64) on the function f (x) = x2. He wants to know if there is a “limit” or
barrier there when x = 8. That is, “Do the y values approaching from both the left and the right approach the same
value (64) . . . a.k.a. the limit of f (x) = x2 at 8?” We have seen tables in Chapter 2 that there is a limit to secant
line-slopes when x = 8. What would be considered proof that a limit exists at x = 8 on the function f (x) = x2?

LimitMan chooses the value � = 2 and uses it to create an interval 62 (64 − �) to 66 (64 + �) for the range values
of the function.



Twenty Key Ideas in Beginning Calculus was conceived when the author noticed that many high school AP 
programs, especially English, often required summer reading for their students. Some math programs have 
been known to experiment 
with requiring the reading 
of historical books about 
mathematics or famous 
mathematicians, but they 
do not get much curricular 
payback for their students’ 
time. Meaningful, acces-
sible, materials that could 
be assigned to students for 
summer reading and that 
would support the calcu-
lus curriculum simply do 
not exist. Such materials 
sound like an oxymoron. 
Common wisdom has it 
that calculus materials are 
inherently too diffi cult for 
students to read and study 
on their own. Any attempt 
to create such materials 
would fail.

Twenty Key Ideas in Beginning Calculus does not claim or intend to be a calculus text. It is a creative 
sequencing and presentation of a subset of topics in the standard calculus curriculum. The author makes 
heavy use of “anticipatory sets,” “schedules of reinforcement,” “connection of mathematical ideas,” “con-
nection to real-world applications,” pacing, patterns, visuals, examples and counterexamples, evolution 
and organization of ideas, repeated threading and spiraling of concepts, and especially repetition, repetition, 
and repetition. Four of the fourteen chapters (1, 2, 3, & 11) are written using only introductory algebra 
skills to introduce both calculus vocabulary and concepts. Limits and other major calculus concepts are 
taught intuitively using tables and visuals. All major proofs are relegated to the appendices, allowing stu-
dents to customize their learning experience according to their ability and interest for rigor.

The author, Dan Umbarger, has taught various levels of mathematics 
from grade 5 to grade 12 for over 30 years. He currently teaches AP 
Computer Science at a Dallas area “majority minority” school. He is 
married and the proud father of three children: Jimmy, Terri, and Keelan. 
He is also the author of Explaining Logarithms and “Explaining Bayes 
Theorem” at www.mathlogarithms.com.
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